

A Suggestive Evaluation of System Test Cases in
OO Systems Through Carving and Replaying
Differential Unit Test Cases: A Metric Context

 1. Amjan. Shaik , CSE, Ellenki College Of Engineering and Technology(ECET), Patelguda ,Hyderabad, India.
 2. Hymavathi. Bhadriraju , CSE, Bharath University (BU), Selaiyur, Chennai, India.
 3. K.Vikram , CSE, City Womens College of Engineering and Technology(CWCET), Hyderabad, India.
 4. Nazeer. Shaik, CSE, Moghal College Of Engineering and Technology(MCET),Bandlaguda, Hyderabad, India.

 5. S.V.Achuta Rao, CSE&IT, DJR Institute of Engineering and Technology(DJRIET),Vijayawada,India.

Abstract
In this paper an attempt is made to implement system test
cases and software metrics with aid of GUI and several
applications were developed to calculate the metrics and
performance of the each test case, which can also be used as
a stand alone method. Further an emphasis is made on
different relationships with system test case and software
metrics, which will helps to determine quality and quantity
of software attributes measured with regard of Object-
Oriented Software Development Life Cycle. We
demonstrate a suggestive evaluation of system test cases in
OO Systems. Developing effective suites of unit test cases
presents a number of challenges. Specifications of unit
behavior are usually informal and are often incomplete or
ambiguous, leading to the development of overly general or
incorrect unit tests. Furthermore, such specifications may
evolve independently of implementations requiring
additional maintenance of unit tests even if
implementations remain unchanged. Testers may find it
difficult to imagine sets of unit input values that exercise
the full range of unit behavior and thereby fail to exercise
the different ways in which the unit will be used as a part of
a system. Unit test cases are focused and efficient. System
tests are effective at exercising complex usage patterns.
Differential unit tests (DUTs) are a hybrid of unit and
system tests that exploits their strengths. They are
generated by carving the system components, while
executing a system test case that influence the behavior of
the target unit and then reassembling those components so
that the unit can be exercised as it was by the system test.
Here, we show that DUTs retain some of the advantages of
unit tests, can be automatically generated, and have the
potential for revealing faults related to intricate system
executions. We describes a framework for carving and
replaying DUTs that accounts for a wide variety of
strategies and trade-offs, we implement an automated
instance of the framework with several techniques to
mitigate test cost enhance flexibility and robustness. The
goal of this paper is to empirically explore the relationship
between OOD Metrics with Test Cases .We empirically
analyzed and tested with Open Source Java
projects[11,12,13].

Keywords: Unit Testing, Test Case, Software Metrics,
Regression Testing.

I. INTRODUCTION
Software testing is an investigation conducted to provide
stakeholders with information about the quality of the
product or service under test. Software testing also
provides an objective, independent view of the software
to allow the business to appreciate and understand the
risks of software implementation. Test techniques
include, the process of executing a program or

application with the intent of finding software bugs
(errors or other defects).An empirical study performed
on different open source java based projects. PCA
(Principal Components Analysis) method was used to
perform this evaluation Object-Oriented design and
development is becoming very popular in today's
software development environment. Object Oriented
development requires not only a different approach to
design and implementation, it requires a different
approach to software metrics. Since Object-Oriented
technology uses objects and not algorithms as its
fundamental building blocks, the approach to software
metrics for Object-Oriented programs must be different
from the standard metrics set. However, it is not apparent
for a developer or a project manager to select the metrics
that are more useful. Furthermore, these metrics are not
completely independent. Using several metrics at the
same time is time consuming and can generate a quite
large data set, which may be difficult to analyze and
interpret. These days Object-Oriented Metrics emerged
as adequate in several domains of Software Engineering
[1, 5]. Various parameters in connection with the
software products and processes are assessed through the
use of Software Metrics. By applying these metrics to
software, it becomes possible to gather numerical data
that quantifiable, related to context dimensions. The
ability of external elements like rely, testing and
maintenance of software influence the accuracy of the
resultant values of metrics [2, 7]. Metrics are then used
to predict software quality [3].Software engineers
develop unit test cases to validate individual program
units such as methods, classes, and packages, before
they are integrated into the whole system. By focusing
on an isolated unit, unit tests are not constrained or
influenced by other parts of the system in exercising the
target unit. This smaller scope for testing usually results
in more efficient test execution and fault isolation
relative to full system testing and debugging. Unit test
cases are also key components of several development
and validation methodologies, such as extreme
programming (XP), test-driven development (TDD)
practices, continuous testing, efficient test prioritization
and selection techniques. Specifications of unit behavior
are usually informal and are often incomplete or
ambiguous, leading to the development of overly general
or incorrect unit tests. Furthermore, such specifications
may evolve independently of implementations requiring
additional maintenance of unit tests even if
implementations remain unchanged. Testers may find it
difficult to imagine sets of unit input values that exercise

Amjan Shaik et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1345-1353

1345

the full range of unit behavior and thereby fail to
exercise the different ways in which the unit will be used
as a part of a system. An alternative approach to unit test
development, which does not rely on specifications, is
based on the analysis of a unit’s implementation. Testers
developing unit tests on achieving coverage-adequacy
criteria in testing the target unit’s code. Such tests are
inherently susceptible to errors of exception with respect
to specified unit behavior and may thereby miss certain
faults. Finally, unit testing requires the development of
test harnesses or the setup of a testing framework (e.g.
JUnit) to make the units executable in isolation. Software
engineers also develop system tests, usually based on
documents that are available for most software systems
that describe the system’s functionality from the user’s
perspective ie, requirement documents and user’s
manuals. This makes system tests appropriate for
determining the readiness of a system for release or its
acceptability to customers[7]. Additional benefits accrue
from testing system-level behaviors directly. First,
system tests can be developed without an intimate
knowledge of the system internals, which reduces the
level of expertise required by test developers and makes
tests less sensitive to implementation-level changes that
are behavior preserving. Second, system tests may
expose faults that unit tests do not, for example, faults
that emerge only when multiple Units are integrated and
jointly utilized. Finally they involve executing the entire
system, no individual harnesses need to be constructed.
System tests are an essential component of all practical
software validation methods. Fault isolation and repair
during system testing can be significantly more
expensive than during unit testing.

II. RESEARCH BACKGROUND
Written specifications and user documentation can
provide you with excellent information for making test
cases. Later, you can write more test cases based on the
function and flow of the application. At this point, you
are ready to group test cases together to form a test
procedure. Finally, you can automate the running of test
cases for regression testing. This way the testers and
others in QA can work on checking new functionality.
Fields that commonly happen in test cases are: Test
case ID, Unit to test, Assumptions, Test data, Steps to be
executed, Expected result, Actual result, Pass/Fail,
Comments

Figure 1: Test cases

In the literature, software engineers develop unit test
cases to validate individual program units like methods,
classes, and packages, before they are integrated into the
whole system. By focusing on an isolated unit, unit tests
are not constrained or influenced by other parts of the
system in exercising the target unit. Software engineers
also develop system tests, usually based on documents
that are available for most software systems that describe
the system’s functionality from the user’s perspective, ie,
requirement documents and user’s manuals. This makes
system tests appropriate for determining the readiness of
a system for release or its acceptability to customers.
Demerits:
1. They can be expensive to execute, for large systems,
days or weeks, and considerable human effort may be
needed for running a thorough suite of system tests.
2. System testing may fail to exercise the full range of
behavior implemented by a system’s particular units,
thus system testing cannot be viewed as an effective
replacement for unit testing.
In the proposed Methodology, DUTs are created from
system tests by capturing components of the exercised
system that may influence the behavior of the targeted
unit and that reflect the results of executing the unit; we
term this carving because it involves extracting the
relevant parts of the program state corresponding to the
components exercised by a system test. Those
components are automatically assembled into a test
harness that establishes the pre-state of the unit that was
encountered during system test execution. From that
state, the unit is replayed and the resulting state is
queried to determine if there are differences with the
recorded unit post state.
 Merits:
1.We improve the cost and effectiveness of system tests
and carved unit tests.
 2.The results indicate that carved test cases can be as
effective as system test cases in terms of fault
detection, but much more efficient in the presence of
localized changes.
3.A framework for automatically carving and replaying
DUTs that accounts for a wide variety of
implementation strategies with different trade-offs.
4.Object Oriented Design Metrics measures effectively
at Design and Testing level.

III. DESIGN METHODOLOGY
The most creative and challenging phase of the life cycle
is system design. The term design describes a final
system and the process by which it is developed. It
refers to the technical specifications that will be applied
in implementations the candidate system. The design
may be defined as “the process of applying various
techniques and principles for the purpose of defining a
device, a process or a system in sufficient details to
permit its physical realization”.The goal of designer is
First, how the output is to be produced and in what
format samples of the output and input are also
presented. Second, input data and database files have to
be designed to meet the requirements of the proposed
output. The processing phases are handled through the
program Construction and Testing. Finally, details

Amjan Shaik et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1345-1353

1346

related to justification of the system and an estimate of
the impact of the candidate system on the user and the
organization are documented and evaluated by
management as a step toward implementation.
The importance of software design can be stated in a
single word “Quality”. Design provides us with
representations of software that can be assessed for
quality. Design is the only way that we can accurately
translate a customer’s requirements into a finished
software product or system without design we risk
building an unstable system, that might fail it, small
changes are made or may be difficult to test, or one
who’s quality can’t be tested. So it is an essential phase
in the development of a software product.

Design

checking()

Apply the lcom5 formula()

Design1

Browse the file()

Read the file()

Design2

Get the declared Fields()

Get the declared methods()

 Figure 1 Class Diagram

IV. SYSTEM ARCHITECTURE

Figure 2 :CR Tool Architecture

4.1 Process Model
Process models define a distinct set of activities , actions,
tasks, milestones, and work products that are required
to engineer for high-quality software. They provide a
useful road-map for software engineering work[3,4].The
Classic Life Cycle, Suggests a systematic, sequential
approach to software development that begins with

customer specification of requirements and progresses
through Planning, Modeling, Construction, and
Deployment, culminating in on-going support of the
complete software.

Figure 3: Classic Life Cycle

V. FRAMEWORK FOR TEST CARVING AND

REPLAY
The development stage takes as its primary input the
design elements described in the approved design
document. For each design element, a set of one or more
software artifacts will be produced, appropriate test cases
will be developed for each set of functionally related
software artifacts, and an online help system will be
developed to guide users in their interactions with the
software.

Figure 4: Framework

At this point, the RTM is in its final configuration. The
outputs of the development stage include a fully
functional set of software that satisfies the requirements

 Planning
 estimating
 scheduling
 tracking

Communication
 project initiation
 requirements
gathering

 Modeling
 analysis
 design

Construction
 code
 test

 Deployment
 delivery
 support

feedback

Amjan Shaik et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1345-1353

1347

and design elements previously documented, an online
help system describes the test cases to be used to validate
the correctness and completeness of the software, an
updated RTM, and an updated project plan will have:
1. Identify a program state from which to initiate
testing,
2. Establish that program state,
3. Execute the unit from that state, and
4. Judge the correctness of the resulting state.

Improving CR with Projections:
We focus CR testing on a single method by defining
projections on carved pre-sates that preserve
information related to the unit under test and are likely to
provide significant reduction in pre-state size.
Instantiation of the framework:
The carving activity starts with the Carver class which
takes four inputs: the program name, the target
method(s) m within the program, the system test case stx
inputs, the reduction and filtering options.
Clustering projection.:
 The clustering projection attempts to identify a set of
similar UTs,DUTxcallee;1;DUTx!callee;2; . . . , that
result from the repeated invocation of callee from within
the same DUT, DUTx caller, of method caller.
Evaluating the framework:
Efficiency: We first focus on the efficiency of the carving
process. Although our infrastructure completely
automates carving, this process does consume time and
storage so it is important to assess its efficiency as it
might impact its adoption and scalability.
Fault detection effectiveness: Most of the test suites
carved from S-selection, (with k _ 1), C-selection mayref
,and C-selection-touched detected as many faults as the
S-retest-all technique. This indicates that a DUT test
suite can be as effective as a system test suite at
detecting faults, even when using aggressive projections.

Necessity for Software Metrics
Now days lot of software’s are developed by the
developers. Many of the software’s are very big in code
size. So generally to maintain the quality of the code,
developers need to is tribute the code in small pieces or
parts. But how to divide the software is also an important
task as it can lead to various problem of inter module
communication therefore this modularized code should
also be checked for the quality. There are problems in
removing the errors of non modularized code.
Particularly in object oriented software development
developer needs to use a lots of object oriented concepts
which may introduced the inter dependency of the
various units of the software e.g. Inheritance. A software
metric is a measure of some property of a piece of
software or its specifications. Therefore software metrics
suite is needed [12]. We are concentrating on the same
issue and providing the software metrics for this
modularized object oriented code.
5.1Framework Approach in Automation
A framework is an integrated system that sets the rules of
Automation of a specific product. This system integrates
the function libraries, test data sources, object details and
various reusable modules. These components act as

small building blocks which need to be assembled in a
regular fashion to represent a business process. Thus,
framework provides the basis of test automation and
hence simplifying the automation effort. There are
various types of frameworks. They can be categorized on
the basis of the automation component they leverage.
They are:
1. Data-driven testing
2. Modularity-driven testing
3. Keyword-driven testing
4. Hybrid testing
5. Model-based testing
Regression Testing
Regression testing is a type of software testing that seeks
to uncover software regressions. Such regressions occur
whenever previously working software functionality
stops working as intended. Typically, regressions occur
as an unintended consequence of program changes.
Common methods of regression testing include rerunning
previously run tests and checking whether previously
fixed faults have re-emerged[10,11].
Experience has shown that as software is fixed,
emergence of new and reemergence of old faults is quite
common. Sometimes reemergence occurs because a fix
gets lost through poor revision control practices . Often,
a fix for a problem will be "fragile" in that it fixes the
problem in the narrow case where it was first observed
but not in more general cases which may arise over the
lifetime of the software. Frequently, a fix for a problem
in one area inadvertently causes a software bug in
another area. Finally, it has often been the case that when
some feature is redesigned, the same mistakes that were
made in the original implementation of the feature were
made in the redesign. Therefore, in most software
development situations it is considered good practice that
when a bug is located and fixed, a test that exposes the
bug is recorded and regularly retested after subsequent
changes to the program. Although this may be done
through manual testing procedures using programming
techniques, it is often done using automated testing tools.
Such a test suite contains software tools that allow the
testing environment to execute all the regression test
cases automatically; some projects even set up
automated systems to automatically re-run all regression
tests at specified intervals and report any failures.
Common strategies are to run such a system after every
successful compile, every night, or once a week. Those
strategies can be automated by an external tool, such as
BuildBot.
Regression testing is an integral part of the extreme
programming software development method. In this
method, design documents are replaced by extensive,
repeatable, and automated testing of the entire software
package at every stage in the software development
cycle. Traditionally, in the corporate world, regression
testing has been performed by a software quality
assurance team after the development team has
completed work. However, defects found at this stage are
the most costly to fix. This problem is being addressed
by the rise of developer testing. Although developers
have always written test cases as part of the development
cycle, these test cases have generally been either

Amjan Shaik et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1345-1353

1348

functional tests or unit tests that verify only intended
outcomes. Developer testing compels a developer to
focus on unit testing and to include both positive and
negative test cases[1].

Merits
Regression testing can be used not only for testing the
correctness of a program, but often also for tracking the
quality of its output. For instance, in the design of an
application, regression testing should track the code size,
simulation time and time of the test suite cases. Also as
a consequence of the introduction of new bugs, program
maintenance requires far more system testing per
statement written than any other programming.
Theoretically, after each fix one must run the entire batch
of test cases previously run against the system, to ensure
that it has not been damaged in an obscure way.
Regression analysis
Regression Analysis includes any techniques for
modeling and analyzing several variables, when the
focus is on the relationship between a Dependent
variable, one or more Independent variables. More
specifically, regression analysis helps us understand how
the typical value of the dependent variable changes when
any one of the independent variables is varied, while the
other independent variables are held fixed. Most
commonly, regression analysis estimates the conditional
expectation of the dependent variable given the
independent variables ie, the average value of the
dependent variable when the independent variables are
held fixed. Less commonly, the focus is on a quantile, or
other location parameter of the conditional distribution
of the dependent variable given the independent
variables. In all the aces, the estimation target is a
function of the independent variables called the
regression function. In regression analysis, it is also of
interest to characterize the variation of the dependent
variable around the regression function, which can be
described by a probability distribution.
Regression analysis is widely used for prediction
including forecasting of time-series data. Use of
regression analysis for prediction has substantial overlap
with the field of machine learning. Regression analysis is
also used to understand which among the independent
variables are related to the dependent variable, and to
explore the forms of these relationships. In restricted
circumstances, regression analysis can be used to infer
causal relationships between the independent and
dependent variables. A large body of techniques for
carrying out regression analysis has been developed.
Familiar methods such as linear regression and ordinary
least squares regression are parametric, in that the
regression function is defined in terms of a finite number
of unknown parameters that are estimated from the data.
Nonparametric regression refers to techniques that allow
the regression function to lie in a specified set of
functions, which may be infinite-dimensional. The
performance of regression analysis methods depends on
the form of the data-generating process, and how it
relates to the regression approach being used. Since the
true form of the data-generating process is not known,
regression analysis depends to some extent on making
assumptions about this process. These assumptions are

sometimes but not always testable, if a large amount of
data is available. Regression models for prediction are
often useful even when the assumptions are moderately
violated, although they may not perform optimally[8].
However when carrying out inference using regression
models, especially involving small effects or questions of
causality based on observational data, regression
methods must be used cautiously as they can easily give
misleading results.
Underlying Assumptions
Classical assumptions for regression analysis include:
 The sample must be representative of the population

for the inference prediction.
 The error is assumed to be a random variable with a

mean of zero conditional on the explanatory
variables.

 The independent variables are error-free. If this is
not so ,modeling may be done using errors-
in-variables model techniques.

 The predictors must be linearly independent, i.e. it
must not be possible to express any predictor as a
linear combination of the others.

 The errors are uncorrelated, that is, the variance-
covariance matrix of the errors is diagonal and each
non-zero element is the variance of the error.

 The variance of the error is constant across
observations . If not, weighted least squares or other
methods might be used.

These are sufficient but not all necessary conditions for
the least-squares estimator to possess desirable
properties, in particular, these assumptions imply that the
parameter estimates will be unbiased, consistent, and
efficient in the class of linear unbiased estimators. Many
of these assumptions may be relaxed in more advanced
treatments.

VI. SOFTWARE TESTABILITY

IEEE defines testability as the degree to which a system
or component facilitates the establishment of test criteria
and the performance of tests to determine whether those
criteria have been met. ISO defines testability as
attributes of software that bear on the effort needed to
validate the software product. Testability is defined as an
important characteristic of maintainability. In order to
help in appraising the ease (or difficulty) for testing
software, many testability analysis and measurement
approaches have been proposed these last several years.
These approaches were investigated within different
application domains.
Fenton et al. define testability as an external attribute.
Freedman introduced testability measures for software
components based on two factors: observability and
controllability. He defined observability as the ease of
determining if specific inputs affect the outputs of a
component, and controllability as the ease of producing
specific outputs from specific inputs. The introduced
testability measures are only applied to functional
specifications by examining input and output domains.
Voas defines testability as the probability that a test case
will fail if the program has a fault [6]. He considers that
testability is the combination of the probability that a

Amjan Shaik et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1345-1353

1349

location is executed, the probability of a fault at a
location, and the probability that corrupted results will
propagate to the observable outputs. Voas and Miller
propose a testability metric based on the inputs and
outputs domains of a software component, and the PIE
(Propagation, Infection and Execution) technique to
analyze software testability [2].
 Binder [13] discusses software testability based on six
factors: representation, implementation, built-in text, test
suite, test support environment and software process
capability. Khoshgoftaar et al. [3] modeled the
relationship between static software product measures
and testability. They used the developed model to
classify the component program modules as having low
or high testability. They used the fault-based definition
of testability proposed by Voas et al. [6]. Software
testability is considered as a probability predicting
whether tests will detect a fault. Khoshgoftaar et al. [4]
applied neural networks to predict testability from static
software metrics.
McGregor et al. [5] address testability of OOS and
introduce the visibility component measure (VC).
Bertolino et al. [11] investigate the concept of testability
and its use in dependability assessment. They adopt a
definition of testability, as a conditional probability,
somewhat different from the one proposed by Voas et al.
[6]. They derive the probability of program correctness
using a Bayesian inference procedure. Le Traon et al. [4,
7, 8] propose testability measures for dataflow designs.
Petrenko et al. [5] and Karoui et al. address testability in
the context of communication software. Sheppard et al.
[5] focuses on formal foundation of testability metrics.
Jungmayr [3] investigates testability measurement based
on static dependencies within OOS. He takes an
integration testing point of view and uses this approach
to identify test-critical dependencies.
Gao et al. [3] consider testability from the perspectives
of component-based software construction. They define
component testability based on five factors:
understandability, observability, controllability,
traceability and testing support capability. They argue
that component testability can be verified and measured
based on the five factors in a quality control process.
According to Gao et al., software testability is not only a
measure of the effectiveness of a test process, but also a
measurable indicator of the quality of a software
development process. They address component
testability issues by introducing a model for component
testability analysis during a component development
process.
 Nguyen et al. [5] focused on testability analysis based
on data flow designs in the context of embedded
software. Baudry et al. [9] addressed testability
measurement of object-oriented designs. They focused
on design patterns as coherent subsets in the architecture,
and explained how their use can provide a way for
limiting the severity of testability weaknesses. A
testability measurement for UML class diagrams is
proposed. They detect undesirable configurations in
UML class diagrams, which they call testability anti-
patterns. They also proposed solutions to improve the
testability of the design [10].

Metrics can be used to assess software testability.
Metrics can, in fact, be used to locate parts of a program
which contribute to a lack of testability. Bruntink et al.
[11] investigate factors of the testability of OOS. They
evaluated a set of well-known object-oriented metrics
with respect to their capabilities to predict testability of
classes of a Java system. They investigate testability
from the perspective of unit testing. More recently,
Chowdhary [12] focuses on why it is so difficult to
practice testability in the real world.

Software Testing Metrics

1. Cost of finding a defect in testing (CFDT)
= Total effort spent on testing / defects found in testing
[Total time spent on testing including time to create,
review, rework, execute the test cases and record the
defects. This should not include time spent in fixing the
defects].
2. Test Case Adequacy: This defines the number of
actual test cases created vs estimated test cases at the end
of test case preparation phase. It is calculated as
No. of actual test cases / No: of test cases estimated
3. Test Case Effectiveness: This defines the
effectiveness of test cases which is measured in number
of defects found in testing without using the test cases. It
is calculated asNo. of defects detected using test
cases*100/Total no: of defects detected
4. Effort Variance can be calculated as
{(Actual Efforts-Estimated Efforts) / Estimated Efforts}
*100
5. Schedule Variance: It can be calculated as
{(Actual Duration - Estimated Duration)/Estimated
Duration}*100
6. Schedule Slippage: Slippage is defined as the amount
of time a task has been delayed from its original baseline
schedule. The slippage is the difference between the
scheduled start or finish date for a task and the baseline
start or finish date. It is calculated as
((Actual End date - Estimated End date) / (Planned End
Date – Planned Start Date) * 100
7. Rework Effort Ratio:
{(Actual rework efforts spent in that phase / Total actual
efforts spent in that phase)} * 100
8. Review Effort Ratio:
(Actual review effort spent in that phase / Total actual
efforts spent in that phase) * 100
9. Requirements Stability Index:
{1 - (Total No. of changes /No of initial requirements)}
10. Requirements Creep:
(Total No. of requirements added / No of initial
requirements) * 100
11. Weighted Defect Density:
WDD = (5*Count of fatal defects)+(3*Count of Major
defects)+(1*Count of minor defects)
 Here the Values 5, 3, 1 correspond to severities as
mentioned below:
Fatal-5
Major-3
Minor-1
12.The Defect Removable Efficiency (DRE) is the

Amjan Shaik et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1345-1353

1350

percentage of defects that have been removed during an
activity, computed with the equation :
DRE = (Number of Defects Removed / Number of
Defects at Start of Process) * 100
The DRE can also be computed for each software
development activity and plotted on a bar graph to show
the relative defect removal efficiencies for each activity.
Or, the DRE may be computed for a specific task or
technique (e.g. design inspection, code walkthrough, unit
test, 6 month operation, etc.),We can also calculate DRE
as: DRE = A / (A+B)
where A = Defects by raised by testing team and B =
Defects raised by customer
If dre <=0.8 then good product otherwise not.

Test Phase Metrics
For all projects the following metrics will be captured
and published by the QA team during the Test Phase.
Metrics that look at Functional Areas/Requirements
check for test coverage and consistency of test effort.

Test Process Metrics
The following are provided during the Test Preparation
stage of the Test Phase:
• Test Preparation
- Number of Test Requirements Vs Functional
Areas/Requirements (Test coverage)
- Number of Test Cases Planned Vs Ready for Execution
- Total Time Spent on Preparation Vs Estimated Time
The following are provided during the Test Execution
stage of the Test Phase:
• Test Execution and Progress
- Number of Test Cases Executed Vs Test Cases Planned
- Number of Test Cases Passed, Failed and Blocked
- Total Number of Test Cases Passed by Functional
Areas/Requirements
- Total Time Spent on Execution Vs Estimated Time

Test Product Metrics
• Bug Analysis
- Total Number of Bugs Raised and Closed per Period
- Total Number of Bugs Closed Vs Total Number of
Bugs Re-Opened (Bounce Rate)
- Bug Distribution Totals by Severity per Period
- Bug Distribution Totals by Functional

Areas/Requirements by Severity per Period.

VII. EMPIRICAL RESULTS

 Figure 1:Select an application

 Figure 2:Execute the application

 Figure 3:Considering test case on various parameters

 Figure 4:Validations on Specific parameters

Figure 5: Test case results

Amjan Shaik et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1345-1353

1351

 Figure 6:Validations on a package

ACKNOWLEDGEMENTS

The authors thankful to the M.Tech (CSE) students, Bharath
University,Chennai for the preparation of this document as part of
their M.Tech Project and also thankful to Ellenki College of
Engineering & Technology‘s Research & Development Center,
Hyderabad for their cooperation and support in data collection.

CONCLUSION

The main advantage of this new model being proposed is
that it unifies the various OOS attributes and helps to
capture much more than the simple static structure of a
system. In order to ensure application of this model in a
more generalized manner, we need to replicate this study
on other large projects in addition to assessing the
validity of the model for predicting the testability, fault
proneness and maintainability. We presented tools and
techniques that allow us to dynamically collect stacks in
multithreaded GUI applications, .including entries from
the libraries that they use. In addition , we empirically
demonstrated the feasibility and effectiveness of using
dynamically collected call stacks as a coverage criterion
for GUI applications. We have shown that event-driven
GUI applications are sufficiently different from
traditional applications to require new coverage criteria.
In our future work, we plan to further generalize our
results for coverage criteria that are effective for GUI
testing scenarios. Although we were able to successfully
analyze complete call stack coverage data for the
TerpOffice applications, that data volume for even
larger applications may become unwieldy. Thus, we
intend to look for techniques that reduce the number of
coverage requirements generated by a complete call
stack data collection while still retaining call stack
coverage’s desirable qualities .One idea is to limit the
depth of calls into library routines. Another strategy is to
define a similarity metric for call stacks such that
different stacks with a certain similarity value may be
considered redundant and therefore be discarded. A large
number of object-oriented (OO) metrics are used to
assess different software attributes. Software metrics can
be calculated automatically from source code. The
assessment of even large software systems can be
performed quickly at a low cost. Software metrics can be

useful in predicting software quality attributes and
supporting various software engineering activities.
Empirical validation of software metrics is therefore
important to ensure their practical relevance. Metrics can
be used to assess software testability. Metrics can be
used to locate parts of a program which contribute to a
lack of testability. Bruntink et al. investigate factors of
the testability of OOS. They evaluated a set of well-
known object-oriented metrics with respect to their
capabilities to predict testability of classes of a Java
system. They investigate testability from the perspective
of unit testing.

REFERENCES

[1] J. Bach. Useful features of a test automation system Testing
Techniques Newsletter, Oct. 1996.
[2] K. Beck. Test Driven Development: By Example. Addison-Wesley
Longman Publishing Co., Inc., Boston,
MA, USA, 2002.
[3] R. Binder. Testing Object-Oriented Systems: Models, Patterns, and
Tools, chapter 18, pages 943–951. Object Technologies. Addison
Wesley, Reading, Massachusetts, USA, first edition, 1999.
[4] D. Binkley. Semantics guided regression test cost reduction. IEEE
Transactions on Software Engineering, 23(8):498–516,Aug. 1997
[5] C. Boyapati, S. Khurshid, and D. Marinov. Korat: automated testing
based on java predicates. In International Symposium on Software
Testing and Analysis, pages 123–133, 2002.
[6] L. C. Briand, M. D. Penta, and Y. Labiche. Assessing and
improving state-based class testing: A series of experiments. IEEE
Trans. Software. Engineering, 30(11):770–793, 2004.
[7] Y. Chen, D. Rosenblum, and K. Vo. Test Tube: A system for
selective regression testing. In Proc. of the 16th Int Conf.on Software
Engineering, pages 211–220, May 1994.
[8] Y. Cheon and G. T. Leavens. A simple and practical approach to
unit testing: The jml and junit. In European Conference on Object-
Oriented Programming, pages 231–255, June 2002.
[9] C. Csallner and Y. Smaragdakis. Jcrasher: an automatic robustness
tester for java. Softw. Pract. Exper., 34(11):1025–1050, 2004.
[10] H. Do, S. G. Elbaum, and G. Rothermel. Supporting controlled
experimentation with testing techniques: An infrastructure and its
potential impact. Empirical Software Engineering: An International
Journal, 10(4):405–435,2005.
[11] Amjan Shaik,Dr.C.R.K Reddy”Statiscal Analysis for Object
Oritented Design Software Metrics”, International Journal of
Engineering Science and Technology(IJEST),Vol. 2(5), 2010, 1136-
1142.
[12] Amjan Shaik, C. R. K. Reddy, Bala Manda, Prakashini. C,
Deepthi. K” An Empirical Validation of Object Oriented Design
Metrics in Object Oriented Systems” International Journal of Emerging
Trends in Engineering and Applied Sciences (IJETEAS) 1 (2): 216-224
(ISSN: 2141-7016).
[13] Amjan Shaik, C. R. K. Reddy, Bala Manda, Prakashini. C,
Deepthi,” Metrics for Object Oriented Design Software Systems: A
Survey ”International Journal of Emerging Trends in Engineering and
Applied Sciences (IJETEAS) 1 (2): 190-198 (ISSN: 2141-7016).
[14] Aggarwal, K.K., Yogesh, S., Arvinder, K., and Ruchika, M.,
“Empirical study of object-oriented metrics”, Journal of Object
Technology, vol. 5, no. 8, 2006.
[15] Aggarwal, K.K., Yogesh, S., Arvinder, K., and Ruchika, M.,
“Empirical analysis for investigating the effect of object-oriented
metrics on fault proneness: A replicated case study”, Software Process:
Improvement and Practice, 16 (1), 2009.
[16] Bruntink, M., and Deursen, A.V., “Predicting Class Testability
using Object-Oriented Metrics”, Fourth Int. Workshop on Source Code
Analysis and Manipulation (SCAM), IEEE Computer Society, 2004.
[17] Bruntink, M., and Van Deursen, A., “An empirical study into class
testability”. Journal of Systems and Software, 79, 9, 2006.
[18] McGregor, J., and Srinivas, S., “A measure of testing effort”,
Proceeding of the Conference on Object-Oriented Technologies, pages
129-142. USENIX Association, June1996.
[19] Zhou, Y., and Leung, H., “Empirical Analysis of Object-Oriented
Design Metrics for Predicting High and Low Severity Faults”. IEEE
TSE, Vol. 32, No. 10, October 2006.
[20] Sommervile, I., “Software Engineering”, Addison-Wesley, 2007.

Amjan Shaik et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1345-1353

1352

ABOUT THE AUTHORS

Amjan Shaik is working as a Professor and
Head, Department of Computer Science and
Engineering at Ellenki College of Engineering
and Technology (ECET), Hyderabad, India. He
has received M.Tech. (Computer Science and
Technology) from Andhra University,
Visakhapatnam, India. Presently, he is a Research

Scholar of JNTUH Hyderabad. He has been published and presented
34 Research and Technical papers in International Journals ,
International Conferences and National Conferences. His main
research interests are Software Engineering, Testing, Software Metrics,
and Software Quality.

 Hymavathi. Bhadriraju is working as a
Lecturer , Department of Computer Science and
Engineering at Bharth University, Chennai,
India. She has received M.Tech (CSE) from
Bharth University, Chennai.,India. She has
presented number of Technical papers in
National Conferences. Her research interests are
Software Engineering, Software Testing,

Computer Networks, Network Security and Programming Languages.

K.Vikram is working as a Professor and
Head, Department of Computer Science and
Engineering at City Womens College of
Engineering and Technology ,Hyderabad,
India. He has received M.E from Anna
University, Chennai,India. Presently he is a
Research Scholar in JNTUH Hyderabad. He
has published and presented good number of
Technical and Research Papers in National

and International Conferences. His research Interests are Software
Testing, Image Processing , Computer Organization and Information
Security.

 Nazeer.Shaik is working as an Assistant
Professor , Department of Computer Science and
Engineering at Moghal College of Engineering
and Technology (MCET), Hyderabad, India.
He has received M.Tech (CSE) from Bharth
University, Chennai, India. He has presented
number of Technical papers in National

Conference. His research interests are Software Engineering, Software
Project Management, Computer Networks and Mobile Computing.

 S.V. Achuta Rao is working as a Professor
and Head, Department of CSE and IT at DJR
Institute of Engineering and Technology
(DJRIET), Vijayawada, India. He has received
M.Tech. (Computer Science and Engineering)
from JNTU, Kakinada, India. Presently, he is a
Research Scholar of Rayalaseema University
(RU), Kurnool, India. He has been published
and presented good number of Research and

technical papers in International and National Conferences. His main
research interests are Data Mining, Networking, Image Processing,
Software Engineering and Software Metrics.

Amjan Shaik et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1345-1353

1353

